23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// function to demonstrate a static local array
void staticArrayInit(void)

{

// initializes elements to 0 first time function 1is called
static array< 1int, arraySize > arrayl; // static local array

cout << ;

// output contents of arrayl

for (size_t i = 0; i < arrayl.size(Q); ++i)
cout << << i << << arrayl[i] << :
cout << :

// modify and output contents of arrayl
for (size_t j = 0; j < arrayl.size(); ++j)
cout << << j << << (Carrayl[j] += 5) <<

} // end function staticArraylnit

Fig. 7.12 | static array initialization and automatic array initialization.
(Part 2 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

42 // function to demonstrate an automatic local array
43 void automaticArrayInit(void)

4 {

45 // initializes elements each time function 1is called

46 array< int, arraySize > array2 = { , , }; // automatic local array
47

48 cout << ;

49

50 // output contents of array?2

51 for (size_t i = 0; i < array2.size(); ++i)

52 cout << << i << << array2[i] << :

53

54 cout << :

55

56 // modify and output contents of array?2

57 for (size_t j = 0; j < array2.size(); ++j)

58 cout << << j << << (array2[j] += 5) << :

59 } // end function automaticArraylnit

Fig. 7.12 | static array initialization and automatic array initialization.
(Part 3 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

First call to each function:

Values on entering staticArraylnit:

arrayl[0] = O arrayl[l] = O arrayl[2] =0
Values on exiting staticArraylInit:
arrayl[0] = 5 arrayl[l] = 5 arrayl[2] =5
Values on entering automaticArrayInit:
array2[0] = 1 array2[1l] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[l] = 7 array2[2] = 8
Second call to each function:

Values on entering staticArraylInit:
arrayl[0] = 5 arrayl[l] = 5 arrayl[2] =5

Values on exiting staticArrayInit:
arrayl[0] = 10 arrayl[l] = 10 arrayl[2]

10

Values on entering automaticArraylInit:

array2[0] = 1 array2[l] = 2 array2[2] = 3
Values on exiting automaticArraylnit:
array2[0] = 6 array2[l] = 7 array2[2] = 8

Fig. 7.12 | static array initialization and automatic array initialization.
(Part 4 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.5 Range-Based for Statement

* It’s common to process a//the elements of an
array.

« The new C++11 range-based for statement
allows you to do this without using a counter,
thus avoiding the possibility of “stepping
outside” the array and eliminating the need
for you to implement your own bounds
checking.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

tLs

Error-Prevention Tip 7.2

When processing all elements of an array, if you don’t
need access to an array element’s subscript, use the
range-based for statement.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.5 Range-Based for Statement (cont.)

* The syntax of a range-based for statement is:
for (rangeVariableDeclaration : expression)
statement

» where rangeVariableDeclaration has a type and
an identifier (e.g., 1nt 1tem), and
expressionis the array through which to
Iterate.

* The type In the rangeVariableDec/aration must
be consistent with the type of the array’s
elements. o atts reserved,

7.5 Range-Based for Statement (cont.)

You can use the range-based for statement
with most of the C++ Standard Library’s
prebuilt data structures (commonly called
containers), including classes array and
vector.

Figure 7.13 uses the range-based for to
display an array’s contents (lines 13-14 and
22—-23) and to multiply each of the array’s
element values by 2 (lines 17-18).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 7.13: fig07_13.cpp

2 // Using range-based for to multiply an array's elements by 2.
3 #include <iostream>

4 #include <array>

5 using namespace std;

6

7 int main(Q)

8 {

9 array< 1int, > items = { 1, 7, 2, 4, };
10

11 // display items before modification

12 cout << ;

13 for (int item : items)

14 cout << item << ;

15

16 // multiply the elements of items by 2

17 for (int &itemRef : items)

18 jtemRef *= _;

19

Fig. 7.13 | Using range-based for to multiply an array's elements by 2. (Part
| of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

20 // display items after modification

21 cout << ;
22 for (int item : items)

23 cout << item << ;

24

25 cout << endl;

26 1} // end main

items before modification: 1 2 3 4 5
items after modification: 2 4 6 8 10

Fig. 7.13 | Using range-based for to multiply an array's elements by 2. (Part
20f2)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.5 Range-Based for Statement (cont.)

Using the Range-Based for to Display an array’s Contents

 The range-based for statement simplifies the
code for iterating through an array.

* Line 13 can be read as “for each iteration,
assign the next element of 1temsto 1nt
variable 1tem, then execute the following
statement.”

 Lines 13-14 are equivalent to the following

counter-controlled repetition:

for (int counter =¢0;, counter, <.items.size(); ++counter)
cout << items[counter Rphigiesetvedt .

7.5 Range-Based for Statement (cont.)

Using the Range-Based for to Modify an array’s Contents

 Lines 17-18 use a range-based for statement
to multiply each element of 1tems by 2.

 Inline 17, the range\VariableDeclaration
indicates that 1temRef is an 1nt reference

(&).

« We use an 1nt reference because items
contains 1nt values and we want to modify
each element’s value—because 1temReT is
declared as a reference; any change you make

7.5 Range-Based for Statement (cont.)

Using an Element’s Subscript

« The range-based for statement can be used in
place of the counter-controlled for statement
whenever code looping through an array does
not require access to the element’s subscript.

* However, If a program must use subscripts for
some reason other than simply to loop through
an array (e.g., to print a subscript number
next to each array element value, as in the
examples early‘inthis:chapter), you should use

7.6 Case Study: Class GradeBook Using
an array to Store Grades

This section further evolves class
GradeBook, introduced in Chapter 3 and
expanded in Chapters 4-6.

Previous versions of the class process grades
entered by the user, but go nof maintain the
individual grade values in the class’s data
members.

Thus, repeat calculations require the user to
reenter the grades.

©1992-2014 by Pearson Educationdm. All

In this section, we store-grades In an array.

Welcome to the grade book for
(5101 Introduction to C++ Programming!

Fig. 7.14 | Output of the GradeBook example that stores grades in an array.
(Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

The grades are:

Student
Student
Student
Student
Student
Student
Student
Student
Student

Student 10:

(Class average is 84.90
Lowest grade 1is 68
Highest grade is 100

Grade distribution:

0-9:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: #¥*
80-89: #w¥**
90-99: *=*

100: =

LCoOoONOTUL s WNPRE

87
68
94

: 100

83
78
85
91
76
87

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

